Arithmetic functions and their coprimality

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Coprimality of Some Arithmetic Functions

Let φ stand for the Euler function. Given a positive integer n, let σ(n) stand for the sum of the positive divisors of n and let τ(n) be the number of divisors of n. We obtain an asymptotic estimate for the counting function of the set {n : gcd(φ(n), τ(n)) = gcd(σ(n), τ(n)) = 1}. Moreover, setting l(n) := gcd(τ(n), τ(n+ 1)), we provide an asymptotic estimate for the size of #{n 6 x : l(n) = 1}.

متن کامل

Some Related Functions to Integer GCD and Coprimality

We generalize a formula of B. Litow [7] and propose several new formula linked with the parallel Integer Coprimality, Integer GCD and Modular Inverse problems as well. Particularly, we find a new trigonometrical definition of the GCD of two integers a, b ≥ 1 : gcd(a, b) = 1 π ∫ π 0 cos[ (b− a)x ] sin (abx) sin(ax) sin(bx) dx. We also suggest a generalization of the GCD function to real numbers.

متن کامل

Extended Jacobi and Laguerre Functions and their Applications

The aim of this paper is to introduce two new extensions of the Jacobi and Laguerre polynomials as the eigenfunctions of two non-classical Sturm-Liouville problems. We prove some important properties of these operators such as: These sets of functions are orthogonal with respect to a positive de nite inner product de ned over the compact intervals [-1, 1] and [0,1), respectively and also th...

متن کامل

Explicit estimates on the summatory functions of the Moebius function with coprimality restrictions

We prove that | ∑{ d≤x, (d,q)=1 μ(d)/d| ≤ 2.4 (q/φ(q))/ log(x/q) for every x > q ≥ 1 and similar estimates for the Liouville functions. We give also better constants when x/q is larger.

متن کامل

Neural Computation of Arithmetic Functions

The basic processing unit of a neural network i s a linear threshold element. I t has been known that neural networks can be much more powerful than traditional logic circuits, assuming that each threshold element can be built at a cost comparable to that o f AND, OR, Nor logic elements. Whereas any logic circuit o f polynomial size (in n) that computes the product of two n-bit numbers requires...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Functiones et Approximatio Commentarii Mathematici

سال: 2011

ISSN: 0208-6573

DOI: 10.7169/facm/1317045231